Basic Configuration # **Table of Contents** | Basic Configuration | 1 | |---|----| | Table of Contents | | | Chapter 1 System Management Configuration | 1 | | 1.1 File Management Configuration | 1 | | 1.1.1 Managing the file system | | | 1.1.2 Commands for the file system | 1 | | 1.1.3 Starting up from a file manually | 1 | | 1.1.4 Updating software | 2 | | 1.1.5 Updating configuration | 3 | | 1.1.6 Using ftp to perform the update of software and configuration | 3 | | 1.2 Basic System Management Configuration | 4 | | 1.2.1 Configuring Ethernet IP Address | 4 | | 1.2.2 Setting the Default Route | 5 | | 1.2.3 Using Ping to Test Network Connection State | 5 | | Chapter 2 Terminal Configuration | 6 | | 2.1 VTY Configuration Overview | 6 | | 2.2 Configuration Tasks | 6 | | 2.2.1 Relationship between Line and Interface | | | 2.3 Monitor and Maintenance | | | 2.4 Browsing Logs | 7 | | 2.5 VTY Configuration Example | 7 | | Chapter 3 SSH Configuration Commands | 8 | | 3.1 Ssh Overview | 8 | | 3.1.1 SSH Server | 8 | | 3.1.2 SSH Client | 8 | | 3.1.3 Attribute Realization | 8 | | 3.2 Configuration Tasks | | | 3.2.1 Configuring the Authentication Method List | | | 3.2.2 Configuring Access List | | | 3.2.3 Configuring the Authentication Timeout Time | | | 3.2.4 Configuring the Authentication Retry Times | | | 3.2.5 Configuring the Login Silence Period | | | 3.2.6 Enabling Encryption Key Saving Function | | | 3.2.7 Enabling SFTP Function | | | 3.2.8 Enabling SSH Server | | | 3.3 Configuration Example of SSH Server | | | 3.3.1 ACL | | | 3.3.2 Global Configuration | 10 | # **Chapter 1 System Management Configuration** ### 1.1 File Management Configuration ### 1.1.1 Managing the file system The filename in flash is no more than 20 characters and filenames are case insensitive. GP3616 OLT is mainly consisted of MSU. As MSU needs IOS, download BIN file to MSU. Ensure the suffix of the BIN file is .bin. The BIN file name can be arbitrary. In GP3616 file system, IOS file with the suffix .bin is used for MSU startup. The file name is arbitrary. BOOTROM will select a bin startup automatically based on the sequence. tiger.blob file is applied on the PON program of GP3616 board card. startup-config is the system configuration file; config.db is the ONU configuration database file; and if index-config is the port mapping configuration file. ### 1.1.2 Commands for the file system The boldfaces in all commands are keywords. Others are parameters. The content in the square brakcet "[]" is optional. | Command | Purpose | | |-----------------|---|--| | format | Formats the file system and delete all data. | | | dir [filename] | Displays files and directory names. The file name in the symbol "[]" means to display files starting with several letters. The file is displayed in the following format: Index number file name <file> length established time</file> | | | delete filename | Deletes a file. The system will prompt if the file does not exist. | | | md dirname | Creates a directory. | | | rd dirname | Deletes a directory. The system will prompt if the directory is not existed. | | | more filename | Displays the content of a file. If the file content cannot be displayed by one page, it will be displayed by pages. | | | cd | Changes the path of the current file system. | | | pwd | Displays the current path. | | ### 1.1.3 Starting up from a file manually monitor#boot flash < local_filename> The command is to start an OLT software in the flash, which may contain multiple OLT softwares. ### Description | Parameters | Description | |----------------|---| | local_filename | file name in the flash, the user must enter the file name | ### Example monitor#boot flash switch.bin ### 1.1.4 Updating software User can use this command to download OLT system software locally or remotely to obtain version update or the custom-made function version. There are two ways of software update in monitor mode. ### 1. Through TFTP protocol monitor#copy tftp flash [ip_addr] The command is to copy file from the tftp server to the flash in the system. After you enter the command, the system will prompt you to enter the remote server name and the remote filename. ### Description | Parameters | Description | |------------|---| | ip_addr | Means the IP address of the TFTP server. If this parameter is not designated, you are prompted to enter the IP address after the copy command is run. | ### Example The following example shows a main.bin file is read from the server, written into the OLT and changed into the name switch. Bin. monitor#copy tftp flash Prompt: Source file name[]?main.bin Prompt: Remote-server ip address[]?192.168.20.1 Prompt: Destination file name[main.bin]?switch.bin please wait ... TFTP:successfully receive 3377 blocks ,1728902 bytes monitor# ### 1.1.5 Updating configuration The OLT configuration is saved as a file, the filename is startup-config. You can use commands similar to software update to update the configuration. ### 1. Through TFTP protocol monitor#copy tftp flash startup-config ### 1.1.6 Using ftp to perform the update of software and configuration switch #copy ftp flash [ip_addr] Use ftp to perform the update of software and configuration in formal program management. Use the copy command to download a file from ftp server to OLT, also to upload a file from file system of the OLT to ftp server. After you enter the command, the system will prompt you to enter the remote server name and remote filename. copy{ftp:[[//login-name:[login-password]@]location]/directory]/filename}|flash:filenam e>}{flash<:filename>|ftp:[[[//login-name:[login-password]@]location]/directory]/filenam e}<bl/>blksize><mode><type> ### Description | Parameters | Description | |----------------|---| | login-nam | Username of the ftp server If this parameter is not designated, you are prompted to enter the IP address after the copy command is run. | | login-password | Password of the ftp server If this parameter is not designated, you are prompted to enter the IP address after the copy command is run. | | ip_addr | IP address of the ftp server If this parameter is not designated, you are prompted to enter the IP address after the copy command is run. | | active | Means to connect the ftp server in active mode. | | passive | Means to connect the ftp server in passive mode. | | type | Set the data transmission mode (ascii or binary) | ### Example The following example shows a main.bin file is read from the server, written into the OLT and changed into the name switch.bin. switch#copy ftp flash Prompt:ftp user name[anonymous]? login-nam Prompt:ftp user password[anonymous]? login-password Prompt:Source file name[]?main.bin Prompt:Remote-server ip address[]?192.168.20.1 Prompt:Destination file name[main.bin]?switch.bin Or #### Note: - When the ftp server is out of service, the wait time is long. If this problem is caused by the tcp timeout time (the default value is 75s), you can configure the global command ip tcp synwait-time to modify the tcp connection time. However, it is not recommended to use it. - When you use ftp in some networking conditions, the rate of data transmission might be relatively slow. You can properly adjust the size of the transmission block to obtain the best effect. The default size is 512 characters, which guarantee a relatively high operation rate in most of the networks. # 1.2 Basic System Management Configuration ### 1.2.1 Configuring Ethernet IP Address monitor#ip address < ip_addr> < net_mask> This command is to configure the IPaddress of the Ethernet., The default IP address is 192.168.0. 1, and the network mask is 255.255.25.0. ### Description | Parameters | Description | |------------|----------------------------| | ip_addr | IP address of the Ethernet | | net_mask | Mask of the Ethernet | ### Example monitor#ip address 192.168.1.1 255.255.255.0 ### 1.2.2 Setting the Default Route monitor#ip route default <ip_addr> This command is used to configure the default route. You can configure only one default route. ### Description | Parameters | Description | | |------------|---------------------------|--| | ip_addr | IP address of the gateway | | ### Example monitor#ip route default 192.168.1.1 ### 1.2.3 Using Ping to Test Network Connection State monitor#ping <ip_address> This command is to test network connection state. ### Description | Parameters | Description | | |------------|---------------------------------------|--| | ip_address | Stands for the destination IP address | | ### Example monitor#ping 192.168.20.100 PING 192.168.20.100: 56 data bytes 64 bytes from 192.168.20.100: icmp_seq=0. time=0. ms 64 bytes from 192.168.20.100: icmp_seq=1. time=0. ms 64 bytes from 192.168.20.100: icmp_seq=2. time=0. ms 64 bytes from 192.168.20.100: icmp_seq=3. time=0. ms ----192.168.20.100 PING Statistics---- 4 packets transmitted, 4 packets received, 0% packet loss round-trip (ms) min/avg/max = 0/0/0 # **Chapter 2 Terminal Configuration** ### 2.1 VTY Configuration Overview The system uses the line command to configure terminal parameters. Through the command, you can configure the width and height that the terminal displays. ### 2.2 Configuration Tasks The system has four types of lines: console, aid, asynchronous and virtual terminal. Different systems have different numbers of lines of these types. Refer to the following software and hardware configuration guide for the proper configuration. | Line Type | Interface | Description | Numbering | |-----------|---------------------------|--|----------------------------| | CON(CTY) | Console | To log in to the system for configuration. | 0 | | VTY | Virtual and asynchrono us | To connect Telnet, X.25 PAD, HTTP and Rlogin of synchronous ports (such as Ethernet and serial port) on the system | 32 numbers starting from 1 | ### 2.2.1 Relationship between Line and Interface ### 1. Relationship between Synchronous Interface and VTY Line The virtual terminal line provides a synchronous interface to access to the system. When you connect to the system through VTY line, you actually connects to a virtual port on an interface. For each synchronous interface, there can be many virtual ports. For example, if several Telnets are connecting to an interface (Ethernet or serial interface). Steps for configuring VTY: - Log in to the line configuration mode. - (2) Configure the terminal parameters. Note: The serial port terminal and telnet terminal may log out the system if they log on to OLT without any operation within a certain time. The timeout can be configured. For VTY configuration, refer to the section "VTY configuration example". ### 2.3 Monitor and Maintenance Runshow line to checkthe VTYconfiguration. ### 2.4 Browsing Logs By default, the system will export the logs to the console port. After the terminal monitor command is set on the telnet line, the logs will be exported to this line. By default the logs will not be exported to the cache and cannot be browsed after you run show log. After you run logging buffer *size* to set the log cache, you can run show log to browse the log information. # 2.5 VTY Configuration Example It shows how to cancel the limit of the line number per screen for all VTYs without more prompt: config#line vty 0 32 config_line#length 0 32 vty configuration timeout time Switch_config#line vty 0 31 Switch_config_line#exec-timeout 10 Switch_config_line#exit Switch_config# # **Chapter 3 SSH Configuration Commands** ### 3.1 Ssh Overview #### 3.1.1 SSH Server SSH client can provide a secure and encrypted communication link through SSH server and other devices. This connection has the same functions as those of Telnet. SSH server supports the following encryption algorithms: des, 3des and blowfish. #### 3.1.2 SSH Client SSH client runs on the basis of the SSH protocol, providing authentication and encryption. Due to the application of authentication and encryption, SSH client ssh client allows to establish secure communication in unsecure network environment between our's communication devices or between other devices that support ssh server. SSH client supports the following encryption algorithms: des, 3des and blowfish. ### 3.1.3 Attribute Realization SSH server and SSH client support SSH 1.5. Both of them supports the shell application. ## 3.2 Configuration Tasks ### 3.2.1 Configuring the Authentication Method List SSH server adopts the login authentication mode. SSH server uses the default authentication method list by default. In global configuration mode, the following command can be used to configure the authentication method list. | Command | Purpose | |----------------------------|---| | ip sshd auth-method STRING | Configure the authentication method list. The length of the authentication method's name is no more than 20 characters. | ### 3.2.2 Configuring Access List In order to control SSH server to access other devices, you can configure ACL for SSH server. In global configuration mode, the following command can be used to configure the timeout time. | Command | Purpose | |-----------------------------|---| | ip sshd access-class STRING | Configures ACL. The length of the access list's name is no more than 19 characters. | ### 3.2.3 Configuring the Authentication Timeout Time After SSH client connects SSH server successfully, the SSH server will close the connection if the authentication cannot be passed during the configured time. In global configuration mode, the following command can be used to configure the authentication timeout. | Command | Purpose | |----------------------------|--| | ip sshd timeout <60-65535> | Configure the authentication timeout time. | ### 3.2.4 Configuring the Authentication Retry Times If the times for failed authentications exceed the maximum times, SSH server will not allow you to retry authentication and the system enters the silent period. The maximum times for retrying authentication is 6 by default. In global configuration mode, the following command can be used to configure the authentication retry times. | Command | Purpose | |--------------------------------|--| | ip sshd auth-retries <0-65535> | Configures the authentication retry times. | ### 3.2.5 Configuring the Login Silence Period The system enters in the silent period when the authentication retry times exceed the threshold. The silence period is 60s by default. In global configuration mode, the following command can be used to configure the silence period. | Command | Purpose | |---------------------------------|-------------------------------------| | ip sshd silence-period <0-3600> | Configures the login silence period | ### 3.2.6 Enabling Encryption Key Saving Function Enable ssh server and the initial encryption key needs to be calculated. The process may take one to two minutes. When enabling the encryption key saving function, the initial encryption key is saved in the flash. When enabling ssh server in a second time, the encryption key will be read first. sftp function is disabled by default. Use the following command to enable sftp function in global configuration mode: | Command | Purpose | |--------------|--| | ip sshd save | Enable encryption key saving function. | ### 3.2.7 Enabling SFTP Function The SFTP function refers to the secure file transmission system based on SSH, of which the authentication procedure and data transmission are encrypted. Though it has low transmission efficiency, network security is highly improved. SFTP function is disabled by default. Run following command to enable SFTP function in global configuration mode. | Command | Purpose | |--------------|-----------------------| | ip sshd sftp | Enable sftp function. | ### 3.2.8 Enabling SSH Server Ssh server is disabled by default. WHEN SSH server is enabled, a RSA key pair will be generated and then listens the connection request from SSH client. The whole process probably requires one or two minutes. The following command can be used in global configuration mode to enable SSH server: | Command | Purpose | |----------------|---| | ip sshd enable | Enable SSH server. The digit of the password is 1024. | # 3.3 Configuration Example of SSH Server The following configuration allows the host whose IP is 192.168.20.40 to access SSH server, while the local user database will be used to authenticate the user. ### 3.3.1 ACL ip access-list standard ssh-acl permit 192.168.20.40 ### 3.3.2 Global Configuration aaa authentication login ssh-auth local ip sshd auth-method ssh-auth ip sshd access-class ssh-acl ip sshd enable